Actuator Speed Control using Digital Hydraulics

Cristiano C. Locateli
Henri Carlo Belan
Edson R. De Pieri
Petter Krus
Victor J. De Negri

LASHIP – Laboratory of Hydraulic and Pneumatic Systems
Federal University of Santa Catarina
Florianópolis - S.C. – Brazil

FLUMES - Fluid and Mechatronic Systems
Linköping University
Linköping, Sweden
Introduction

In the last few years, the **energetic efficiency** of hydraulic systems has been widely discussed...

One approach that has a particular potential is **digital hydraulics**.

Digital hydraulics has several potential advantages when compared with traditional technology.

Contributions

The **main objective** of this paper is to discuss the speed control of symmetrical actuators using digital hydraulic principles.

It is proposed a **hydraulic circuit configuration** based on use of **several fixed displacement and on/off valves**.

An **energy management device** is also proposed.
Proposal of a Digital Hydraulic System

Symmetric actuator

Working module
- It is responsible for directing the flow rate from the fixed displacement units (FDUs) to the actuator chambers

Suction module
- It allows flow from the actuator chambers to the digital pump

Return module
- It allows the idle operation of the FDUs when they are not providing flow rate to a actuator chamber

A preliminary discussion and results, using one symmetrical cylinder, were presented in FPNI PH.D Symposium 2014, Finland (Locateli et al., 2014)
Proposal of a Digital Hydraulic System

Two actuators not sharing the same FDUs

- Independent FDU for each actuator;
- Larger number of components;
- The actuators can be used simultaneously;
- Capacity to reuse energy when moving load applied on the direction of the movement
Proposal of a Digital Hydraulic System

Two actuators sharing the same FDUs

- Actuators **must not use** the same FDU at the same time;
- **Lower** number of components;
- **Reduction in the availability** of speed levels for the actuators;
- Capacity to **reuse energy** when moving load applied on the direction of the movement
Proposal of a Digital Hydraulic System

FDU – Operating modes

Pump mode
When the applied force on the actuator is in the **opposite direction** of movement

Motor mode
When the applied force on the actuator is in the **same direction** of movement

Idle mode
When the FDU is in idle condition

Applied force direction
Actuator movement direction

Applied force direction
Actuator movement direction
Control Method

- The actuator speed is function of which **on/off valves are active**, prime mover speed and system loads;

- Seven different speeds;

- The **size** of digital pump units are defined by **mathematical sequence** of power of two (1, 2 and 4).

Example: Third actuator speed level.

- **The red line** represents the FDU operating in pump/motor mode.
- **The blue line** represents the flow that leaves chamber B,
- **The green line** shows FDU 1P\(_4\) operating in idle mode
Control Method

- The transient state behaviour comprises the transition between speed levels;

- Delay time between the changes of speed levels;

- Delay time is applied to minimize hydraulic short circuits;

- The valve opening time is 40 ms.

Example: Diagram related to speed changing between the second and third levels.

- A control signal is initially sent to close the $1V_{1R}$ valve of the return module;

- After a specific delay time, a control signal is sent to open the $1V_{1PA}$ valve of the working module;

- During this process, the $1V_{2PA}$, $1V_{SB}$ and $1V_{4R}$ valves remain activated.
Operating example

Symmetric actuator

Transition between the **second** and **third** speed levels (slow motion).
Results

Delay times in the digital hydraulic system

Actuator speed for four different delay times of the valve input signal
Results

Delay times in the digital hydraulic system

Flow and control signal on the $1V_{2PA}$ valve
Preliminary Results

Energy dissipation

Energy dissipation with a delay of 10%.

- The total energy dissipated is nearly 25% of the total energy used by the system.

- The main dissipation occurs in the 1V₁₉, 1V₁₅, and 1V₃₃₁₅ valves.

Energy dissipation with a delay of 90%.

- The total energy dissipated is nearly 20% of the total energy used by the system.

- The main valve dissipations occur on the 1V₁₅, 1V₄₅, and 1V₃₃₉₅ valves.
Preliminary Results

Speed control in an open loop

- The higher speed oscillations, both in advance and return movements, take place between the third and fourth levels.

- The accumulator smooths the changes in the actuator speed, despite of causing a delay in the response.

- Short time interval of 150 ms.
Preliminary Results

Speed control in an open loop

Pressures in the fixed displacement units for a variation of actuator speed from the fifth level of advance to the third level of retreat

FDU 1 ($1P_1$)
From pump mode to motor mode

FDU 2 ($1P_2$)
From idle mode to motor mode

FDU 4 ($1P_4$)
From pump mode to idle mode
Proposal of an energy management device

Operational modes

Motor mode
- Tends to reduce the energy consumed by the prime mover;
- It can be used when the DHS operates in pump mode.

Idle mode
- It can be used when the DHS operates in pump mode or idle mode.

Pump mode
- It is able to store energy;
- It can be used when the DHS operates in motor mode.

Red line indicates high pressure
Blue line indicates low pressure
Arrows show the flow direction
Proposal of an energy management device

Digital hydraulic system with an energy management device

- The **control action** acts on the variation of the volumetric displacement of the VDU and on the states of the $1V_{ArR}$ and $1V_{ArP}$ valves.

- **Challenge**: Achieving an effective energy management is related to the control strategy.
Advantages, Disadvantages, and Challenges of the proposed digital hydraulic system

- The hydraulic system losses, due to flow throttling, are reduced and, thus, the efficiency is increased due to the replacement of the continuous directional control valve sor flow control valves by on/off valves;

- Possibility to reuse or store the energy when any FDU operates in motor mode due to the use of a closed circuit;

- The use of on/off valves in the hydraulic system guarantees a smaller contaminant influence and greater robustness. However, the use of a large number of valves can present problems related to the system physical size and synchronization.
Conclusions

- This paper has discussed a concept of a hydraulic system that aims to increase energy efficiency using hybrid hydraulic principles;

- Preliminary results show the importance of a appropriated control strategy for the opening and closing the on/off valves. A suitable choice enables low actuator speed oscillations and low energy dissipation;

- The energy management device enables to store energy in the motor mode reducing the spend energy by the prime motor when the digital hydraulic system operates in pump mode.

Ongoing activities by the research groups:
Actuator Speed Control using Digital Hydraulics

Cristiano C. Locateli
cristiano@laship.ufsc.br
Victor J. De Negri
victor.de.negri@ufsc.br
Petter Kras
petter.krus@liu.se